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Overall context

PV + Network # €

corr(PV, inhabitant) = 0 => Uncontrolled instable exportation => Network overload
and harmonics :

- direct energy loss (Joule effect % RI?) €

- indirect loss (load shedding, value dropping) €

- infrastructure maintenance/reinforcement costs €
- (and taxes for prosumers in Belgium ...)



Proposed solution(s)

[ Surplus PV production
[ Surplus consum ption
I Self-consumption

[1] : average individual self-consumption = 40%

Load shifting Load shifting

- +2-15% with load shifting
- +13-24% with battery energy storage

Energy storage [

Production/consumption (kW)
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= Collective load shifting ? [1]

[1] R. Luthander, J. Widén, D. Nilsson, and J. Palm, “Photo-voltaic self-consumption in buildings: A review,” Applied Energy, vol. 142, pp. 80 — 94, 2015.



(hypothesis : community =
How ?

Minimize household/community energy exportation :

big household
TE =P - (C+F)
E=P-(C+F)
E: exportation

P: production (PV)? -ﬁ'
C: non-flexible consumption?
F: flexible consumption (shiftable loads)?
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(hypothesis : community =
How ?

Minimize household/community energy exportation :

big household
TE =P - (C+F)
E=P-(C+F)
E: exportation

P: production (PV)? = meteo {}
C: non-flexible consumption? = forecasting model!

F: flexible consumption (shiftable loads)? = load shifting
(linear programming)




Energetic community load forecasting

Objective: forecast community load with a high accuracy!
Issue: depends on various community characteristics :

- Community size: noiseness B if size fd (aggregation level)
- History length: model accuracy i if data
- Resident behaviour: more or less predictable patterns ?

Research question:

Impact of community characteristics on forecasting accuracy ?



Methodology

1. Simulate load for virtual energetic communities (VEC)
a. random sampling of k households from a dataset
b. extract rolling windows of h weeks of data history

2. Train and test our model for each VEC simulated
a. training set: h weeks of data
b. test set: the next week of data
c. train model and extract predictions for test set
d. compute overall evaluation metrics (RMSE, compare with baseline models, ...)
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-  RMSE from 453Wh to 75Wh! (453Wh = random forecast)
Results . 4igh improv. until 20-30 households
- High improv. until 5-20 weeks
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-  RMSE from 453Wh to 75Wh! (453Wh = random forecast)
Results . 4igh improv. until 20-30 households

- High improv. until 5-20 weeks

- Trade-off around 20 households/2 months
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About model complexity ?

Baseline: 3-Week moving average
“Complex model”: Ridge autoregression

- Need more data (<2month =
overfitting)
- Up to 14% RMSE improvement

= Use a simpler model at the
beginning! (or simply wait)
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About community profile ?

- Larger communities (larger k) have more regularity = more predictable

- Older communities (larger h) are more predictable with ridge regression

- Communities with larger consumers (larger y) seem more regular = (relatively) more
predictable

Table 1
SPEARMAN CORRELATIONS BETWEEN VEC PROFILE ATTRIBUTES AND
EVALUATION METRICS.

L Bsp || #] 0| Pday | Pweek | K | h |
7 1.00 0.58 [ [0.43 028 O.11 0.00*
o 0.58 1.00 0.03 -0.12 | [-0.54 0.00%*
Pday 0.43 0.03 1.00 0.94 0.62 0.00*
Pweek 028 | -0.12 0.94 1.00 0.68 0.00*
€ 0.39 0.86 | -0.30 -0.44 | [-0.70 -0.28
4] 0.23 0.36 0.13 0.03 |]-0.15 0.75
A 0.18 0.16 0.27 0.19 0.05 0.82

* Not significant (p > 0.1). All others are significant (p < 1E — 13).



Takeaway findings

1. Poor accuracy at starting, should increase over time for the first few months
2. Target more predictable communities: larger “regular” consumers, at least 10 households
3. Trade-off on “size” vs “age”. 20 houses/2months = optimal efficiency

4. Limited interest of ML: up to 10-14% improvement (after 2-6 months)



Limitations/Takeaway questioning

1.

Who are the larger and “more predictable” consumers ? (larger consumer = family? rich
household with a heated pool?) = New data needed

Impact of load forecasting accuracy on planification accuracy ?? = Future work

We don’t care about load forecasting accuracy during the evening (nothing to self-consume)!
= Future work: forecasting only needed during production hours (PV = day)

Consumer behaviour change (especially if participating in a energetic community) =
forecasting model adaptativity ?



Thank you!

Mickaél Tits
mickael.tits@cetic.be

(')cefic

Your Connection to ICT Research

Related paper: IEEE COMPSAC 2020 (ICT4SmartGrid workshop):
https://www.researchgate.net/publication/344097745 Impacts_of size and history length _on_energetic_community load forecasting_a_case study
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